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Abstract. The inorganic quasi-one dimensional (1D) S = 1/2 antiferromagnetic (AF) system CuGeO3

undergoes a 2nd order spin-Peierls (SP) phase transition at TSP = 14.2 K. In this study we present an X-ray
synchrotron radiation investigation which confirms that the SP instability is announced by an important
regime of pretransitional structural fluctuations which have been detected until 36 K. Furthermore we
show that these fluctuations are 1D above 24 K, a feature expected for a structural instability triggered by
the Cu2+ chains of spin 1/2. By extrapolating the thermal dependence of the correlation length in the chain
direction, we show that formation of singlet dimers begins at about 50 K, a temperature that we identify
as the mean field temperature of the SP chain. The critical nature of the pretransitional fluctuations does
not change when low amounts (<1%) of non-magnetic dopants substitute either the Cu site (case of Zn
and Mg) or the Ge site (case of Si and Al) of CuGeO3. However, the spatial extension of the fluctuations
is considerably reduced when the magnetic dopant Ni substitutes the Cu site. In the SP ground state
of doped materials we have been able to detect, in addition to the superlattice SP reflections previously
observed, a very weak anisotropic diffuse scattering. We give evidences that this scattering originates from
dopant-induced quasi-1D domains in which the dimerisation is perturbed. If we assume that each domain
is limited by a soliton-antisoliton pair, pinned either on the substituent of the Cu site or by the deformation
field induced by the substituent of the Ge site, we deduce that the soliton and antisoliton are separated
by a distance of about L0 ∼ 28−45 Å, and that the soliton half width amounts to about ξSP ∼ 16−20 Å.
With these numbers we are able to account for the rate of decrease of TSP as a function of the dopant
concentration, and to deduce the critical concentration above which the long-range SP order vanishes. The
overall size of the perturbed domains thus obtained, L0 + 2ξSP ∼ 70 Å, is comparable with the size of the
magnetic inhomogeneities determined by muon spin spectroscopy in the AF phase of doped CuGeO3.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 61.72.Dd Experimental
determination of defects by diffraction and scattering – 75.45.+j Macroscopic quantum phenomena
in magnetic systems

1 Introduction

One of the major achievements of solid state physics
studies of the end of the 20th century was the discov-
ery of quantum cooperative phenomena [1] which tend to
promote collective behaviour such as superconductivity,
charge, spin or orbital density waves, together with charge
or spin gapped states [2]. These features are particularly
well documented in systems of reduced electronic or mag-
netic dimensionality [3]. The description of these quantum
ground states and of their phase diagram when external
parameters such as pressure, magnetic field or chemical
composition is varied, is one of major issues of to day
studies.

Among these systems quantum one-dimensional (1D)
antiferromagnetic (AF) spin chains and ladders have been
particularly studied [4]. The main reason is that their
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ground state properties do not vary continuously when
either the spin S of the chain or the number of legs in the
ladder changes. For example, the S = 1/2 chain develops
at T = 0 K local AF correlations due to quantum fluctu-
ations [4], while the S = 1 chain exhibits a non-magnetic
singlet (S = 0) ground state with a finite gap in its spin
excitation spectrum [3]. An S = 1/2 spin ladder with an
odd number of legs behaves as the S = 1/2 AF chain,
while an S = 1/2 spin ladder with an even number of legs
behaves as the S = 1 AF chain [4]. Even for an S = 1/2
AF chain, an important fraction of the ground state fluc-
tuations contains non-magnetic singlet components. These
components can be picked out of the quantum fluctuations
in presence of a sizeable spin-phonon coupling allowing
the chain to dimerize [5]. This gives rise to a spin-Peierls
(SP) phase transition where, below TSP , the dimerisation
achieves a lattice of non-magnetic S = 0 singlet pairs,
whose magnetic excitations are separated by a gap ∆ from
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the ground state. Spin gapped ground states occur for a
wide class of S = 1/2 AF chains including the XXY chain
with second neighbour exchange interactions [6] and where
the gap is achieved by frustration effects between first (J)
and second (J ′) neighbour AF exchange interactions. In
such a case, the physics of the spin chain is dominated at
short distance by spin singlet formation. Its dynamics is
such that a given spin spends half of its time forming a
singlet with its right partner and the other half of the time
with its left partner, a feature which recalls the “resonat-
ing valence bond” (RVB) picture pointed out 30 years ago
by Anderson [7].

The formation of such a spin gap is a remarkable phe-
nomenon since a macroscopic number of spins becomes
quenched. This state is however very sensitive to per-
turbations: for example, a small amount of non-magnetic
substituents releases “unpaired” 1/2 spins which will thus
develop local AF correlations [8] decreasing exponentially
in space. The non-gapped phase can be recovered by ap-
plying a magnetic field larger than ∆. For SP systems,
the magnetic field stabilizes an incommensurate lattice of
solitons where each discommensuration (which bears an
S = 1/2 moment decorated with AF correlations) sep-
arates two neighbouring regions where the phase of the
dimerisation jumps by π [9].

It was often argued that the SP transition of a S = 1/2
AF chain is the analogue of the Peierls transition of a
metallic chain. In fact, the SP transition is analogous to
the Peierls transition in a spinless fermion gas. Its main
consequence is that the SP ground state is achieved only
for a strong enough spin-phonon coupling α [10,11], while
the conventional Peierls ground state exists whatever the
strength of the electron-phonon coupling. For smaller val-
ues of α (for α < 0.6Ω0, if Ω0 < 2J , according to Ref. [11]),
the quantum fluctuations destroy the SP dimerised ground
state. In the SP ground state, the importance of quantum
effects depend on the relative values of the microscopic
interactions, such as the spin-phonon coupling α, the first
neighbour exchange interaction J and the bare frequency
of the critical phonon mode Ω0 [10]. In a critical analysis
of the experimental situation we have shown [12] that or-
ganic salts such as (TMTTF)2X and (BCPTTF)2X, with
X = PF6 and AsF6, belong to the classical region while
the organic salts MEM-(TCNQ)2, and probably TTF-
CuBDT, are at the boundary between classical and quan-
tum regions and that the inorganic cuprate CuGeO3 be-
longs to the quantum region. These different regimes are
conditioned by the adiabatic or non-adiabatic nature of
the coupling between the spin and structural degrees of
freedom at the origin of the SP instability. For exam-
ple, the critical softening of the frequency of a phonon
mode, in the adiabatic limit, leads to the formation of a
pseudo gap in the spin degrees of freedom [13,14]. It is now
well established that there is no phonon mode softening
in CuGeO3 [42] and that the non-adiabatic limit is rele-
vant to describe its physical properties [15]. The important
question of the dynamics of the SP transition (existence
of a soft mode or/and of a central peak in energy), has
already been considered in reference [12]. Here we shall

Table 1. Oxidation state, ionic radius (in Å) and spin state
of the M = Zn, Mg, Ni and T = Si, Ti, Al substituents of the
Cu and Ge of CuGeO3, respectively.

Cu2+ spin Ge4+

CuGeO3 0.87 1/2 0.53

Substituent M T

M2+ = Zn 0.88 0
Mg 0.86 0
Ni 0.83 1

T4+ = Si 0 0.40
Ti 0 0.56

T3+ = Al Cu3+ 1 0.53
or Zang & Rice singlet 0

not address this question because X-ray diffuse scatter-
ing, which integrates the fluctuations in energy, does not
bring any information concerning the dynamics of the pre-
transitional fluctuations.

However, X-ray diffuse scattering brings invaluable in-
formations concerning the anisotropy of these fluctuations.
In the case of CuGeO3 we have shown [16,17] that the SP
transition is announced by a sizeable regime of 1D pre-
transitional fluctuations, as expected for a structural in-
stability triggered by the magnetic 1D subsystem. Here,
and this is the first purpose of this paper, we complete
these results by a synchrotron radiation study allowing
to define more accurately the dimensionality of the criti-
cal fluctuations of CuGeO3 and their temperature range
of existence above TSP . A brief report of this work had
already appeared in reference [18].

The CuGeO3 system allows to study experimentally,
for the first time, the influence of defects on the SP ground
state. As mentioned above, it is expected, on theoreti-
cal grounds, that defects will depair 1/2 spins of the SP
chain which will thus develop local AF correlations. In
this respect, it has been shown that, while the pure ma-
terial exhibits only a long range SP dimerisation below
TSP = 14.2 K, there is a coexistence between the 3D-SP
distortion and the 3D-AF long-range order in substituted
CuGeO3 for vanishing small concentrations of substituents
both on the Cu and Ge sites [19]. The phase diagram of
substituted CuGeO3 is now well established experimen-
tally [20–22], but the manner by which the AF order lo-
cally nucleates upon doping, is not really known, although
several theories [23–28] have addressed this question. In
this study, and this is the the second purpose of this paper,
we report the first determination of the microstructure of
the SP ground state in presence of substituents. In this re-
spect, we complete a previous study [17] of the influence
of the substituents on the SP instability of CuGeO3.

2 Experimental conditions

2.1 Samples

The experiments have been conducted both on pure
CuGeO3 and substituted Cu1−xMxGe1−yTyO3 samples,
with M = Zn, Mg, Ni or T = Si, Ti, Al. Table 1 indicates
the oxidation state, the ionic radius and the spin state of
these substituents. Among the substituents there is a large
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Table 2. Spin-Peierls critical temperature, TSP , rate of decrease of TSP with the dopant, anisotropy of the inverse correlation
lengths and 3D-2D crossover temperature of the pretransitional critical fluctuations in pure and substituted CuGeO3.

∗ deduced
from this study and of reference [32]. ∗∗ deduced from the measurements of reference [33] very close to TSP .

TSP (K) dTSP /dx (K/%) ξ−1
a : ξ−1

b : ξ−1
c T3D−2D(K)

Pure 14.25(10) 7 : 2.5 : 1∗ 16

5 : 3 : 1∗∗

M substituent

x = 0.6% Zn 13.0(1) −2.1(3) 4 : 2.7 : 1

x = 0.8% Mg 12.9(1) −1.7(3) 5 : 2 : 1 14.7

x = 0.9% Ni 13.15(10) −1.2(3) 2 : 0.7 : 1 13.6

T substituent

x = 0.1% Si 13.7(1) −5.5(20) ? : 1.7 : 1

x = 0.3% Si 12.5(1) −5.8(7)

x = 0.2% Al 13.4(1) −4.2(10) 6 : 2.7 : 1 15.7

x = 0.4% Ti 14.0(1) −0.6(5) ? : 2.6 : 1

difference of size between Si4+ and Ge4+, the Al3+ sub-
stituent is not isoelectronic with the Ge4+, and the Ni2+
substituent is magnetic.

The single crystals studied were grown from the melt
by a floating-zone method associated with an image fur-
nace [29]. The determination of the substituent con-
tent of the crystals was made by inductively coupled
plasma atomic-emission spectroscopy (ICP/AES) [30]. Ta-
ble 2 gives the concentration of the various samples
investigated.

The CuGeO3 single crystal studied here was different
from the one investigated in references [16,17]. The Si,
Zn, Mg and Ni substituted CuGeO3 single crystals are
from batches used in the studies of references [20,22]. The
single crystals have the form of (b, c) platelets of a few
10 µm of thickness along a- and of a few mm in the b- and
c-directions. They were cleaved from larger centimeter size
single crystals.

2.2 X-ray scattering conditions

The study of the SP pretransitional fluctuations of pure
CuGeO3 was performed at the D2AM (BM2) beamline
of the European Synchrotron Radiation Facility (ESRF)
with an X-ray energy of 8 keV. The experimental reso-
lution, determined by the half width at half maximum
(HWHM) of the (1, 1, 1) main Bragg reflection, was
∆Qa = 0.01 Å−1, ∆Qb = 0.009 Å−1 and ∆Qc =
0.006 Å−1 along the three orthogonal directions scanned
(a, b and c respectively). A very weak diffuse scattering
was observed at the (3/2, 1, 3/2) and (1/2, 1, 3/2) recipro-
cal positions. Due to the broadness of the diffuse scatter-
ing in the temperature range studied (19–36 K), the fit of
the profile of the peaks was performed with a Lorentzian
line shape (which Fourier transform corresponds to fluc-
tuations which decay exponentially in real space) without
applying any deconvolution procedure.

The investigation of the SP transition in the
Cu1−xMxGe1−yTyO3 crystals was performed with a
home-made three circle diffractometer (normal beam ge-
ometry with a lifting scintillator detector) mounted on
a rotating anode X-ray generator operating at 55 kW,

180 mA and providing the Cu-Kα (λ = 1.542 Å) radiation
after (002) reflection of the incoming beam on a doubly
bent pyrolitic graphite monochromator. The experimental
conditions were the same as those of the previous study of
reference [17]. In particular, the experimental resolution,
given by the HWHM of the main Bragg reflection (∆Qi),
is about 3 times larger than that of the D2AM synchrotron
radiation study. For each alloy investigated, the (3/2, 1,
3/2) satellite reflection was followed from ∼11 K to TSP .
Very weak pretransitional fluctuations were observed in
a temperature range of a few K above TSP . They were
measured along the a, b and c crystal directions.

In the 0.1% Si crystal, the (3/2, 2, 3/2) satellite re-
flection, due only to the staggered rotation of the CuO2

square in the SP phase [31], was also observed, but with
an intensity 25 times smaller than that of the (3/2, 1,
3/2) satellite reflection. Thus the X-ray study performed
in the vicinity of the (3/2, 1, 3/2) reciprocal position of
pure and substituted CuGeO3, which will be reported be-
low, probes mainly the SP polarisation associated with
the dimerisation of the Cu chains.

In the substituted crystals, a very weak and broad
X-ray diffuse scattering was also detected below TSP in
addition to the SP superlattice reflections. Its detection
was essentially performed at 10.5 K with the fixed film-
fixed crystal method in the conditions described in ref-
erences [16,17]. In particular, X-ray patterns were taken
with a conventional generator providing the Cu-Kα radi-
ation and operating at 15 kV, in order to avoid the λ/2
contamination from the continuous spectrum of the X-ray
tube.

3 Experimental results

3.1 The pretransitional spin-Peierls fluctuations
of CuGeO3

The purpose of our synchrotron radiation investigation
was the measurement of the pretransitional fluctuations of
the SP transition of CuGeO3 far from TSP because their
synchrotron radiation study in the near vicinity of TSP

has already been reported in references [32,33]. Figure 1
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Fig. 1. Scans along the a∗, b∗ and c∗ reciprocal directions of
the X-ray diffuse scattering of CuGeO3 at 19.1 K around the
(3/2, 1, 3/2) reciprocal position.

presents, at 19.1 K (the lowest temperature studied), scans
of the pretransitional fluctuations along the a, b and c or-
thorhombic directions. They clearly show, in agreement
with previous reports [17,33], that the SP fluctuations
of CuGeO3 are quite anisotropic. The inverse correlation
lengths, ξ−1, obtained from the HWHM of the Lorentzian
profile of the diffuse scattering, are for the scans shown in
Figure 1:

ξ−1
c = 0.052 Å

−1
< ξ−1

b = 0.13 Å
−1

< ξ−1
a = 0.22 Å

−1
.

The correlation length is the longest in the magnetic chain
direction, c, as expected for a structural transition trigged
by the spin subsystem. In the c-direction, the pretransi-
tional fluctuations have been measured until 36 K (Fig. 2).

Fig. 2. Scan along the c∗ reciprocal direction of the X-ray
diffuse scattering of CuGeO3 at 36 K around the (1/2, 1, 3/2)
reciprocal position. The continuous line is a fit of the excess of
intensity of the diffuse scattering above the background (dotted
line) by a Lorentzian profile.

Fig. 3. Thermal dependence of the inverse correlation lengths
ξ−1

a , ξ−1
b and ξ−1

c in CuGeO3. This figure defines the 3D-2D
crossover temperature when ξ−1

a = 1/a and the 2D-1D
crossover temperature when ξ−1

b = 2/b, and TMF when ξ−1
c =

1/c. The solid symbols are from the present study and, in
the vicinity of TSP , the open symbols from the data of ref-
erences [32,33]. The lines are power law dependence adjusted
on the data in the vicinity of TSP .

At this temperature, one measures ξ−1
c ≈ 0.23 Å−1, a

value comparable the one obtained at 40 K in the photo-
graphic investigation of reference [16], but two times larger
than the one obtained at 35 K in the diffractometric in-
vestigation of reference [17]. At 19.1 K (Fig. 1) and 36 K
(Fig. 2), the X-ray diffuse scattering has respectively a
peak intensity of about 23% and 10% of the background
(against 7% and 4% at about the same temperatures in
the study performed with a conventional X-ray generator
in Ref. [17]). With a diffuse scattering having a better sig-
nal to noise ratio, our ξ−1

i ’s determination is thus more
accurate than the one given in our previous investigation
of reference [17].

Finally, Figure 3 gives the thermal dependence of
the ξ−1

i ’s. This figure includes also the synchrotron ra-
diation measurements performed in the near vicinity
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(a)

(b)

Fig. 4. Scans along the c∗ reciprocal direction of the 0.1%
Si sample of: (a) the (3/2, 1, 3/2) satellite reflection at 11.5 K,
and (b) of the residual diffuse scattering at the (h, 1, 3/2)
reciprocal position, shown by the upper arrow in Figure 8b,
at 10.5 K. In (a) the profile has been fitted by a Gaussian
squared (resolution function of the diffractometer) and in (b)
by a Gaussian. Note the asymmetry of profile of the superlat-
tice reflection and of the diffuse scattering for large l values.

of TSP [32,33]. Our ξ−1
i ’s values are in the continuation

of these data, if one assumes a critical behaviour under
the form of a power law in temperature. The ξ−1

c ’s val-
ues found in the present investigation slightly differ from
those obtained in our earlier low resolution study [17],
performed with a different CuGeO3 crystal.

3.2 The spin-Peierls transition and the pretransitional
fluctuations of Cu1−xMxGe1−yTyO3

In all the crystals investigated, and containing a small
amount of substituent x < 1% (or y < 0.5%) on the Cu
(or Ge) site (see Tab. 2), a well-defined SP transition was
detected from the growth of sharp superlattice satellite
reflections. Its critical temperature, TSP , which depends
on the amount of substituent, is quoted in Table 2. A typ-
ical scan along c∗ of the (3/2, 1, 3/2) SP reflection of the

0.1% Si sample is shown Figure 4a. This reflection has
the profile and the width of the experimental resolution
(∆Qc = 0.017 Å−1; HWHM). At the scale of this exper-
imental resolution, the crystal undergoes a SP order ex-
ceeding 160 Å (i.e. 0.888π/∆Qc — see Sect. A.3 of the An-
nexe) in the c-direction. Similar results were found in all
the samples which were investigated. The only case where
satellite reflections broader than the experimental resolu-
tion were measured was the 0.6% Zn sample previously
investigated in reference [17]. However, sharp satellite re-
flections were apparently observed for a 1% Zn sample in
another study [33].

Above TSP , the sharp satellite reflections transform
into a weak diffuse scattering broader than the experi-
mental resolution. Typical scans along the a∗-, b∗- and
c∗-directions around the (3/2, 1, −3/2) reciprocal posi-
tion of the 0.8% Mg sample are shown in Figure 5. This
diffuse scattering becomes critical as TSP is approached
from above, as expected for a 2nd order phase transition.

Figure 6 gives, for the 0.3% Si sample, the thermal
dependence of the X-ray peak intensity at the (3/2, 1,
−3/2) reciprocal position. The peak intensity (I) of the X-
ray diffuse scattering in excess of the background diverges
critically at TSP . This is more clearly illustrated in the
insert of this figure which shows that the inverse of this
quantity, corrected by the thermal population factor, T/I,
follows a linear Curie-Weiss type dependence in T − TSP .
Its extrapolation to zero leads to TSP = 12.5 K.

After deconvolution with the experimental resolution,
the HWHM of the diffuse spots gives the inverse corre-
lation length, ξ−1

i , of the pretransitional fluctuations in
the scan direction (i). The critical divergence of the fluc-
tuations leads to a vanishing of ξ−1

i at TSP . Figure 7
shows the thermal dependence, both of the peak inten-
sity and of the inverse correlation length ξ−1

i of the 0.8%
Mg (Fig. 7a), 0.2% Al (Fig. 7b) and 0.9% Ni (Fig. 7c)
samples. The vanishing of the inverse correlation lengths
allows to deduce that TSP occurs respectively at 12.9 K,
13.4 K and 13.15 K. Our TSP value for the 0.8% Mg sam-
ple is higher than the one, of 11 K, given in reference [34]
for a sample of same concentration.

Table 2 summarizes, for all the samples investigated,
the critical temperature TSP at which the critical fluctu-
ations diverge.

This determination of TSP allows to obtain the rate
of decrease of TSP with the dopant concentration x:
dTSP /dx. Within experimental errors, Table 2 shows
that dTSP /dx is very similar for all the Cu substituents
(between −1 and −2 K/% for M = Ni, Mg and Zn). But
the rate of decrease is much smaller than for the Ge sub-
stituents (between −4 and −6 K/% for T = Al and Si).
The rate of decrease of TSP for the Mg and Zn sam-
ples is in good agreement with the one, −{1.8−2.1} K/%,
determined from the drop of the magnetic susceptibility
in references [21,22,35]. TSP is depressed by only 1 K
for the 0.9% Ni sample studied. However for the same
Ni content, a smaller value of TSP (12.6 K) is obtained
from the magnetic measurements of reference [36]. Thus,
one cannot exclude that the real Ni concentration of our
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Fig. 5. Scans along the a∗, b∗ and c∗ reciprocal directions of
the X-ray diffuse scattering around the (3/2, 1, −3/2) recipro-
cal position for the 0.8% Mg sample at 14 K (the horizontal bar
represents twice the HWHM of the experimental resolution).

sample was slightly smaller than 0.9%. For the Si sam-
ples investigated, the rate of decrease of TSP is in good
agreement with the one (−6.3 K/%) determined from the
magnetic measurements of reference [20]. The rate of de-
crease of TSP in our Al sample is 7 times stronger than the
one reported in reference [37]. Finally, a very small rate
of decrease of TSP is found for the T = Ti substituent, in
agreement with to the one determined in reference [37].

Table 2 gives also the anisotropy of the inverse cor-
relation length. Except for the Ni sample, the anisotropy

Fig. 6. Thermal dependence of the (3/2, 1, −3/2) satellite
peak intensity for the 0.3% Si sample. The insert shows the
thermal variation of T/I , a quantity corresponding to the in-
verse susceptibility, and whose vanishing allows the determi-
nation of TSP .

ratio is very similar in all the samples studied and com-
parable to the one of pure CuGeO3. The anisotropy ratio
of the 0.6% Zn sample ξ−1

a : ξ−1
b : ξ−1

c ≈ 4 : 2.7 : 1 is close
to the one, ξ−1

a : ξ−1
b : ξ−1

c ≈ 5.9 : 3 : 1, reported in a
synchrotron radiation study of a 1% Zn sample [33]. The
rate of thermal increase of the ξ−1

i ’s is also very similar
in all the samples studied, except for the Ni one (compare
Figs. 3, 7a and 7b). Figure 7c shows that, in the Ni sample,
the longest correlation is not along the magnetic chain di-
rection c but along the interchain direction b. In addition,
in this sample, the ξ−1

i ’s increase extremely rapidly upon
heating. For example, Figure 7 shows that 0.5 K above
TSP :

– ξ−1
a of the Ni sample is 2.5 (4) times larger than ξ−1

a
of the Mg (Al) sample,

– ξ−1
b of the Ni sample is 2 (4) times larger than ξ−1

b of
the Mg (Al) sample,

– ξ−1
c of the Ni sample is 4 (10) times larger than ξ−1

c of
the Mg (Al) sample.

This proves that ξ−1
c is more strongly affected by the Ni

substitution than ξ−1
a and ξ−1

b . The largest increase of ξ−1
c

causes the change of anisotropy of the ξ−1
i ’s.

3.3 The residual X-ray diffuse scattering
in the spin-Peierls phase of Cu1−xMxGe1−yTyO3

Figure 8 shows X-ray patterns taken (a) in pure CuGeO3

at 10.6 K and (b) in the 0.1% Si compound at 10.5 K. In
pure CuGeO3, only sharp satellite reflections are observed
in the SP phase (Fig. 8a), as previously reported [16]. In
the 0.1% Si sample, only residual diffuse segments are de-
tected (Fig. 8b) in the SP phase. In the photographic in-
vestigation of this latter sample, the crystal was slightly
misoriented so that the SP superlattice spots were not put
in reflection on the Ewald sphere. With the 0.3% Si sample
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(a)

(b)

(c)

Fig. 7. Thermal dependence of the (3/2, 1, −3/2) satellite
peak intensity and of the inverse correlation lengths ξ−1

a , ξ−1
b

and ξ−1
c for the (a) 0.8% Mg, (b) 0.2% Al and (c) 0.9% Ni

samples. The crossover temperature T3D−2D is indicated.

mounted in a more symmetric manner, the SP satellite re-
flections could be detected by the photographic investiga-
tion, corroborating the results of its diffractometric study.
Only the observation of residual diffuse segments was re-
ported in our previous investigation of the Si alloys [17].

For the 0.1% Si sample, Figure 4b presents a micro-
densitometer reading along the c∗-direction across the

Fig. 8. X-ray patterns of pure CuGeO3 at 10.6 K (a) and
of the 0.1% Si-doped sample at 10.5 K (b) taken with about
the same sample orientation. The arrows point towards the
SP superlattice reflections in (a) and towards the residual SP
diffuse scattering in (b). The c∗-direction is horizontal and the
b∗-direction is vertical. These X-ray patterns have been taken
without λ/2 contamination.

l = 3/2c∗ diffuse line of the X-ray pattern shown Fig-
ure 8b. It shows: (1) that along c∗ the diffuse line is
2.5 times larger than the experimental resolution, and (2)
that its intensity is quite weak (∼12% of the background
intensity). A comparison with Figure 4a shows that the
peak intensity of the diffuse line is about 50 times less
intense than the satellite peak intensity. The weakness of
the diffuse scattering (corresponding to about 2.5 counts/s
in the intensity scale of Fig. 4a) explains why it could
not be detected in the diffractometric investigation of
Section 3.2. In addition, the SP superlattice reflections
present an asymmetric profile, probably due to the defor-
mation field induced by the Si substituent in the CuGeO3

matrix (whose smaller ionic radius leads to a shrinkage of
the lattice parameters) and whose intensity is larger than
that of the residual diffuse scattering (see Fig. 4). Thus,
only scans slightly off the position of the SP reflections,
such as those performed by the microdensitometer read-
ing of long exposure photographs, are able to reveal the
residual diffuse scattering.

The HWHM along c∗ of the residual diffuse scattering
in the SP phase of the 0.1% Si compound, shown Fig-
ure 4b, is, after correction with the experimental reso-
lution, of ∆Qc ≈ 0.04 Å−1. Within experimental error
(±0.005 Å−1), this quantity is the same for the 0.25%
and 0.5% Si samples already investigated in reference [17].
In these samples, the diffuse scattering intensity is also
modulated in the b∗-direction, which indicates that the
region perturbed by the dopant involves several chains.
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From the values: ∆Qb = 0.11 ± 0.02 Å−1 obtained in the
0.1% sample, ∆Qb ≈ 0.09 Å−1 in the 0.25% Si sample and
∆Qb = 0.11 ± 0.01 Å−1 in the 0.5% Si sample [17], one
deduces, from ξP

b = ∆Q−1
b ≈ b, that about nb = 3 chains

are coupled in the b-direction.
The same photographic investigation has been per-

formed with other doped samples. In the 0.2% Al sam-
ple, diffuse lines, slightly modulated along b∗, were also
observed below TSP . At 10.5 K, their intrinsic HWHM in
the c∗ and b∗ directions was found to be ∆Qc = 0.04 ±
0.01 Å−1 and ∆Qb ≈ 0.2 Å−1 respectively. From ∆Qb, one
deduces that the perturbed region connects nb = 2 chains
in the b-direction (ξP

b ≈ b/2). In the 0.6% Zn sample,
already studied in reference [17], diffuse lines are also de-
tected below TSP , with, at 10.5 K: ∆Qc = 0.04±0.005 Å−1

and no sizeable interchain coupling along b (ξP
b < b/2).

All these results show that in the SP ground state, the
typical size of the perturbed regions in the magnetic chain
direction does not significantly depend upon the nature
and the concentration of the dopant (for small x and y
values at least): It amounts to about ξP

c = (∆Qc)−1 ≈
25 Å. However, the transverse size, in the b-direction, of
the perturbed region seems to depend upon the nature
of the dopant or, more likely, on the nature of the site
which is substituted: interchain correlations along b are
observed for the Si and Al substituents of Ge, which is
located between the magnetic chains.

4 Discussion

4.1 The spin-Peierls pretransitional fluctuations
of CuGeO3 and its solid solutions

In order to define the dimensionality of the structural
fluctuations, the transverse correlation length has to be
compared with the interchain distance a = 4.8 Å or
b/2 = 4.25 Å. In the data shown Figure 1, ξ−1

a is larger
than 1/a = 0.21 Å−1 at 19.1 K, which means that CuGeO3

is already in the regime of 2D fluctuations. Earlier mea-
surements [17,32] have shown that the crossover temper-
ature from 3D to 2D fluctuations, T3D−2D, defined by
ξ−1
a = 1/a, occurs at about 16 K (∼2 K above TSP ) in

CuGeO3. From the thermal dependence of ξ−1
a (Fig. 7) we

have determined (Tab. 2) T3D−2D for the Mg, Al and Ni
substituted crystals. In the 0.8% Mg and 0.2% Al samples,
T3D−2D occurs also at about 2 K above TSP . This is not
the case for the 0.9% Ni sample for which T3D−2D occurs
only 0.5 K above TSP !

The crossover temperature to the regime of 1D fluc-
tuations, T2D−1D defined by ξ−1

b = 2/b has not been de-
termined accurately until now. The data presented Fig-
ure 3 allow to determine T2D−1D ≈ 24 K in CuGeO3.
The regime of 1D fluctuations thus starts at TSP +10 K.
We have not been able to determine T2D−1D in the sub-
stituted compounds because the pretransitional fluctu-
ations are only detectable in the near vicinity of TSP .
However in the temperature range investigated, ξ−1

b of
all the substituted compounds, except for the Ni one,

roughly scales, as a function of the reduced temperature
T/TSP , as ξ−1

b of pure CuGeO3. If one assumes that such
a scaling law still holds at higher temperatures, one keeps:
T2D−1D ≈ TSP + 10 K. Also, within experimental error,
ξ−1
c of the substituted compounds, except for the Ni one,

scales in T/TSP with ξ−1
c of pure CuGeO3.

Thus below, we shall discuss separately the behaviour
of pure CuGeO3 (and with non magnetic dopant) from
that of the Ni substituted sample.

4.1.1 Pure CuGeO3

Above T2D−1D, a regime of 1D SP structural fluctuations
takes place in pure CuGeO3. These fluctuations have been
detected until 40 K in the photographic investigation of
reference [16], 35 K in the diffractometric investigation of
reference [17], and 36 K in the present synchrotron radia-
tion study (Fig. 2). If one extrapolates by a power law the
thermal dependence of ξ−1

c one finds that ξ−1
c reaches 1/c

at about 47±5 K (Fig. 3). At this temperature, two neigh-
bouring spins begin to be paired into a dimer. An exact
calculation of the structural fluctuations associated with
the SP order parameter [14] shows that the preformation
of singlet dimers occurs at about the mean field tempera-
ture, TMF , of the chain (i.e. the SP transition temperature
calculated in the mean field approximation). One thus gets
from the present data: TMF ∼ 50 K. This finding confirms
a previous analysis [12] of less accurate measurements of
ξc which gave a mean-field temperature of TMF ∼ 60 K.
The finding of a TMF as high as 50–60 K agrees with re-
cent NMR and NQR studies of the CuGe1−xSixO3 solid
solution [65].

It is interesting to note that TMF ∼ 50 K is very close
to the temperature at which the spin susceptibility ex-
hibits a maximum [38]. It is well known that the low tem-
perature decrease of spin susceptibility of the S = 1/2 AF
chain is due to the growth of AF correlations (i.e. to the
development of a short range AF order as shown by Ra-
man measurements in CuGeO3 [39]). In CuGeO3, the SP
pretransitional structural fluctuations thus develop jointly
with the AF short-range order. The fact that AF fluctu-
ations trigger the structural instability is expected in the
mechanism of a true SP instability. However, the nearly
coincidence of TMF with the onset of AF correlations re-
quires quite strong spin-phonon interactions. This find-
ing is also consistent with the observation of anomalies at
about TMF in the thermal expansion of the lattice param-
eters of CuGeO3 [40]. These features can be more quan-
titatively assessed by the deduction of the spin-phonon
coupling constant α from TMF , via the Cross and Fischer
relationship [41]:

kBTMF = 1.6α2/π�Ω0. (1)

In CuGeO3, there are two critical phonon modes at
�Ωo/kB = 310 K and 150 K [42], from which the use of
relationship (1) leads to α ∼ 170−120 K. The coincidence
of this value with the near neighbour exchange interaction
J ∼ 160 K of the AF chain [38] shows that CuGeO3 is in
the strong coupling situation.
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Using the analogue of the BCS relationship for the SP
chain [12b]:

∆MF ≈ 2.3 kBTMF , (2)

one deduces a mean-field SP gap: ∆MF /kB ≈ 108 K. This
value is 4 times larger than the singlet-triplet SP gap ex-
perimentally measured ∆/kB ≈ 28 K (neutron scattering
measurements [43,44] give ∆/kB = 24 K, at the AF criti-
cal wave vector and 31 K, at the SP critical wave vector).
It thus appears that there is a strong reduction of the SP
gap with respect to its mean field value. Such a reduction
can be attributed to quantum fluctuations. Consistently,
the fact that �Ω0 > {∆MF , J} shows that CuGeO3 is in
the quantum regime [10]. The values �Ω0/kB = 310 K,
α ∼ 170 K and J ∼ 160 K, place CuGeO3 just at the
boarderline between the dimerised and uniform (i.e. spin
liquid) phases in the phase diagram of the Heisenberg
chain calculated in reference [11a], for a coupling with
site phonons, and in reference [11b], for a coupling with
bond phonons. This shows also that CuGeO3 is located in
the vicinity of a quantum critical point (which could be
reached under a modest negative pressure, as already em-
phasized in Ref. [12a]). In addition, as �Ωo ≥ J there are
important non-adiabatic corrections which renormalise J
and introduce a next-near neighbour exchange interaction
J ′ [45]. This could explain (at least partly) the unusual
thermal dependence (with respect to the Bonner and Fis-
cher behaviour expected for a S = 1/2 AF chain with only
near-neighbour exchange interaction) of the spin suscep-
tibility [38] of CuGeO3, above TSP .

CuGeO3 exhibits a more pronounced quantum be-
haviour than the organic SP systems. MEM-(TCNQ)2,
with �Ω0 ∼ {∆MF , J}, is in the gapped quantum region
close to the boundary with the classical region [10,12]. Its
spin susceptibility, which is not enough renormalised by
the non-adiabatic corrections, still follows, above TSP , the
Bonner and Fischer thermal dependence of the S = 1/2
AF chain. (TMTTF)2X and (BCPTTF)2X, with X = PF6

and AsF6, with �Ω0 < {∆MF , J} belong to the classical
region [10,12]. The SP fluctuations, which now occur in
the adiabatic limit, lead to the formation of a pseudo-gap
in the spin degrees of freedom which is accompanied by
a drop of the spin susceptibility below TMF , well above
TSP [14].

4.1.2 The Ni doped sample

According to our measurements, the pretransitional struc-
tural fluctuations of the Ni sample behave differently. Fig-
ure 7c shows that, in contrast with the other substituted
samples and of pure CuGeO3, ξb is larger than ξc, and that
all the correlation lengths are quite short. ξa decreases ex-
tremely rapidly, so that the 3D-2D crossover temperature,
T3D−2D, occurs only 0.5 K above TSP . 1 K above TSP ,
ξc amounts to 6 Å (i.e. c/2) and ξb to 8 Å (i.e. b). In
pure CuGeO3, such short correlations are only observed
at TSP + 16 K and TSP + 4 K, respectively (Fig. 3). The
linear extrapolation of the thermal dependence of the in-
verse correlation length along b and c shows that, in the

Ni sample, ξ−1
b should reach 2/b at about TSP + 3 K and

that ξ−1
c should reach 1/c at about TSP + 4 K. Our mea-

surements show that the pretransitional fluctuations of the
Ni compound develop critically only a few K above TSP ,
without the presence of a sizeable regime of 1D fluctua-
tions. If this behavior is confirmed in other Ni samples and
for other magnetic dopants such as Co, it would appear
that the substitution of the Cu site by magnetic impuri-
ties kills the SP fluctuations of CuGeO3. The finding that
ξc is the most strongly reduced by the Ni substitution
shows that the SP fluctuations are killed preferentially in
chain direction. In this respect, it is interesting to note
that the maximum of spin susceptibility, at about 55 K
in pure CuGeO3, has shifted drastically down to about
30K in the 0.9% Ni sample (see Fig. 1 in Ref. [36]). This
could indicate that the 1D AF correlations are strongly re-
duced in the Ni samples, which consequence is to inhibit
the SP structural fluctuations. A possible explanation for
the reduction of the AF correlations could be that each
S = 1 magnetic moment of the Ni impurity induces a fer-
romagnetic polarisation of the S = 1/2 Cu2+ located in
its vicinity.

In this respect, magnetic impurities should perturb the
magnetic chain differently from the non-magnetic impuri-
ties, such as Zn and Mg, whose effect is mainly to break
the exchange path. In presence of non-magnetic impuri-
ties, the fragmentation of the AF chain does not disturb
significantly the growth of the SP instability if the average
distance between two neighbouring impurities in chain di-
rection remains larger than the correlation length of the
1D AF fluctuations.

4.2 The structural disorder in the CuGeO3 solid
solutions

In this section we shall discuss the physical origin of the
residual diffuse scattering observed in the alloys below TSP

(Fig. 8b and Ref. [17]). The non observation of a resid-
ual diffuse scattering in the SP phase of pure CuGeO3

(Fig. 8a) means that the diffuse scattering is due to the
X-ray scattering by parts of the sample where the spin-
Peierls order is perturbed by the substituents. The gen-
eral origin of such an X-ray scattering is explained in Sec-
tion A.1 of the Annexe.

As the diffuse scattering basically corresponds to dif-
fuse sheets in the reciprocal space, the perturbed regions
have a pronounced 1D anisotropy in direct space. These
perturbed regions mainly extend along the chain direc-
tion, c. In this direction, the width of the diffuse scatter-
ing does not vary significantly with the substituent and
the concentration (at least for x and y smaller than 1%).
These are evidences that the perturbed regions nucleated
by all the substituents are basically similar, with a typical
size of the order of ξP

c = (∆Qc)−1 ≈ 25 Å. In principle, the
distribution function of the size of the perturbed domains
could be obtained by a careful analysis of the profile of the
diffuse scattering. This is considered in Section A.2 of the
Annexe for domains in which the SP dimerisation is lost.
In that case, the diffraction by a random distribution of
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domain sizes gives a diffuse scattering with a Lorentzian
profile (see expression (A.21)), while diffraction by a nar-
row distribution of domain size gives a diffuse scattering
with a Gaussian-like profile (see expression (A.18)). Fig-
ure 4b shows that the shape of the diffuse scattering is
closer to a Gaussian than to a Lorentzian. Thus, in the
following we shall assume that all the perturbed regions
keep the same shape and size whatever the substituent
concentration. We consider in the Annexe different cases
where the SP order is perturbed either by a loss of dimeri-
sation (Sect. A.2) or by a dimerisation shifted by half a
modulation period (Sect. A.3).

The perturbed regions are 1D for the Zn substituent on
the Cu site of the magnetic chains. The perturbed region
extends on a few neighbouring chains for the Si and Al
substituents of the Ge atom which is located in-between
the magnetic chains. The fact that interchain correlations
along b depend upon the nature of the site which is sub-
stituted is another evidence that the diffuse scattering is
induced by the dopant.

It is generally shown in the Annexe (Sect. A.1) that the
X-ray scattering from a 3D SP array containing perturbed
domains nucleated on the dopant positions, is the super-
imposition of a Bragg scattering term (whose peak inten-
sity is reduced by the disorder — see expressions (A.13)
and (A.22)) and of a diffuse scattering term whose pro-
file, G(k), is related to the Fourier transform of the form
factor of the perturbed domain (see expressions (A.15)
and (A.23)).

It has been observed that doping, through interrupt-
ing one or several chains, induces uncompensated S = 1/2
spins [20,22]. Theoretical considerations [23,24] have sug-
gested that these spins develop AF correlations which
extend on several Cu sites where the spin-Peierls or-
der is destroyed or reduced. At low temperature, the
dopant-induced magnetic domains couple antiferromag-
netically [19,46]. Muon spin relaxation measurements of
both Zn and Si doped materials [47] have shown that the
AF order is spatially inhomogeneous with, if in each do-
main it is assumed that the moment size decays expo-
nentially, a decay length of about ξAF ∼ 30 Å in the
chain direction. As ξAF is comparable to the domain size,
ξP
c ≈ 25 Å, where the SP order is perturbed in the doped

materials, it is tempting to associate both kinds of per-
turbed regions.

For an isolated SP chain it is well-known [48,9a] that
the excitation of lowest energy is a defect of dimerisa-
tion (or soliton). It extends over twice the SP coherence
length ξSP . ξSP , the typical length on which the SP order
can be destroyed, is given in the standard theory by:

ξSP = �vσ/∆, (3)

where vσ is the spin wave velocity and ∆ is the SP (singlet-
triplet) gap. In CuGeO3, neutron scattering measure-
ments [43,44] lead to �vσ ≈ 38 meV Å and ∆ ≈ 2.4 meV.
Thus, one estimates ξSP ≈ 16 Å. A defect of dimerisation
consists of a non-paired spin, thus the soliton has an un-
compensated spin 1/2. A periodic lattice of solitons can
be generated by applying large magnetic fields, H , to a

SP systems. In CuGeO3, its structure has been accurately
analysed both by structural [49,50] and magnetic [51,52]
measurements. These studies give, for the structural coun-
terpart of the soliton; an half width ξSP ∼ 40 Å (which
is 40% larger than the half width, ∼ξAF , of the magnetic
counterpart of the soliton, a peculiar feature of CuGeO3,
due to frustrated J and J ′ AF couplings, and analyzed in
Ref. [53]). This field induced ξSP value remains however
substantially larger than the H = 0 value, ξSP ∼ 16 Å,
estimated by using expression (3).

It was suggested [23,24] that dopants can generate
such S = 1/2 topological defects which, thus, will ex-
hibit AF correlations over ξSP . In the 1D model developed
in references [24–26], the dopant simply pins the soliton.
However, the perturbation induced by the dopant in a 3D
ordered SP lattice is more subtle because one has to take
into account the change of phasing between the dimeri-
sations located on neighbouring chains: a single soliton,
which induces a shift of π in the phase of the dimerisa-
tion of the chain where it is located, changes also by π the
phase of the dimerisation with respect to the dimers lo-
cated on neighboring chains. This modifies the interchain
coupling energy from a region of favorable coupling (where
the neigbouring dimers are, let us say, out of phase) to
a region of unfavorable coupling (where the neigbouring
dimers are in phase). The unfavorable coupling energy can
be minimized if a soliton is followed, on the same chain,
by an antisoliton which restores the favorable interchain
phasing. This realistic situation, which has been previ-
ously considered in references [23,28], is the basis of the
interpretation of the experimental data obtained in a 3D
ordered SP phase.

Figure 9 gives a schematical representation of the de-
fect consisting of a soliton-antisoliton pair located respec-
tively in z = 0 and z = L0 in the chain direction. We
shall consider it as the elementary pertubation of the 3D
ordered array of SP dimers. For such a defect, the Cu dis-
placement, u(z), along the chain direction, z = lc, can be
written:

u(z) = (−1)l u0[1 − f(z) + f(z − L0)], (4)

where the shape of the soliton is given by:

f(z) = th(z/ξSP ). (5)

Figure 10a shows schematically how such a perturbed re-
gion can be nucleated on a spin neutral substituent of
the Cu site. As a S = 0 site does not undergo the SP
distortion, the soliton is pinned on the dopant position,
and the antisoliton which restores the right interchain SP
phasing is built with an unpaired Cu atom, located at L0,
which thus releases a spin S = 1/2. The formation of a
bound state between the S = 1/2 and the nonmagnetic
impurity has been obtained by numerical simulations tak-
ing explicitly into account the interchain elastic coupling
energy between the SP distortions [28].

Figure 10b shows how the perturbed region can be nu-
cleated on a substituent of the Ge site when the strain field
(due to size or charge effects) associated with the dopant,
forces the two first neighbouring Cu dimers closer to the
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Fig. 9. Schematical representation of the defect of dimerisa-
tion made of a soliton-antisoliton pair.

Fig. 10. Schematical representation of the 2D array of Cu2+

dimers (linked empty circles) perturbed by a non-magnetic
substituent of the Cu site (empty squares) in (a), and by a sub-
stituent to the Ge site (full diamonds) which induces a strain
field (dotted lines) on its neighbouring dimers in (b) and its
next neighbouring dimers in (c). The unpaired Cu2+ are rep-
resented by full circles.

dopant to face each other. This process induces an uniform
phasing between SP distortions on adjacent chains. This
unfavorable lateral phasing can be disrupted by the for-
mation of a soliton-antisoliton pair on one of these chains
bound by the strain field. In such a case, two Cu atoms,
separated by L0, are not paired. This picture, where the
non paired Cu are not located in the strict vicinity of the
Si substituent, is in agreement with the NQR results of ref-
erence [65]. The defects of dimerisation shown in Figure
10b release two spins 1/2 per substituent. In the case of
the Si dopant, there is an average of 3.3 spins 1/2 released
per substituent [20]. Since the ionic radius difference be-
tween the Ge4+ and the Si4+ is quite large (see Tab. 1),
it is thus possible that the strain field extends on second
neighbouring chains. In such a case, shown Figure 10c,
two soliton-antisoliton pairs, releasing four spins 1/2 per

Fig. 11. k dependence of the normalized diffuse scattering
term G(k)/G(k = 0) for different values of r = ξSP /L0.
G(k) is given by the expression (6) and k is expressed in
2π/L0(=c∗/gk=0) units.

substituent, could be formed. The perturbation, which
involves 3 neighbouring Cu chains on average, could be
the superimposition of the situations shown Figures 10b
and 10c.

It is shown in Section A.3 of the Annexe that, with
a perturbation of the dimerisation described by expres-
sions (4) and (5), the k dependence of the profile of the
diffuse scattering is given in the chain direction by the
expression (A.29):

G(k) = (πξSP /c)2[sin(kL0/2)/sh(πkξSP /2)]2. (6)

The shape of the profile depends upon the ratio r =
ξSP /L0. Typical profiles are shown in Figure 11. In prin-
ciple a fit of the k dependence of the experimental profile
by expression (6) should give L0 and ξSP . However, in the
present case, the intensity of the diffuse scattering is not
strong enough to perform an accurate fit.

Below, we shall use the information given by the
HWHM of the experimental diffuse scattering, ∆Qc. For
that purpose, Figure 12 gives the dependence of the
reduced quantities L0∆Q and ξSP ∆Q as a function of r
(for ≤3), in which ∆Q is the HWHM of the profiles calcu-
lated from expression (6). In the range of values shown, the
r dependence of L0∆Q and ξSP ∆Q can be well accounted
for by the analytical expression (A.32) of the Annexe, with
an error less than 4% (continous lines in Fig. 12). How-
ever, from the single measurement of ∆Qc, L0 and ξSP

cannot be obtained independently: one needs to know one
length to obtain the other one. Below, we shall use three
different methods to estimate one of these lengths, and we
shall deduce the other one from the results of Figure 12.

4.2.1 Estimation of ξSP

Figure 12 shows that one always has ξSP ∆Q < 1. Our
measurements ∆Qc = 0.04± 0.005 Å−1 gives thus an up-
per limit of 22−29 Å for ξSP . This limit is smaller than the
half width, ∼40 Å, of the structural soliton lattice induced
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Fig. 12. Dependence of the reduced HWHM, L0∆Q (empty
squares) and ξSP ∆Q (full circles), of the profile G(k) shown
Figure 11, as a function of the ratio r = ξSP /L0. The contin-
uous lines gives the reduced HWHM calculated by the expres-
sion (A.32).

under high magnetic field, H [49,50], which even increases
when H decreases [51]. Thus, the data obtained from the
magnetic field induced soliton lattice do not help getting
a ξSP value consistent with the measurements performed
at H = 0. We shall thus estimate ξSP by using the neu-
tron data of references [43,44] in expression (3). This gives
ξSP = 16 Å. With this value, the product ξSP ∆Q amounts
to 0.55–0.72, and Figure 12 leads to r ∼ 0.25−0.4, from
which one deduces L0 ∼ 40−64 Å.

4.2.2 L0 deduced from the decrease of the spin-Peierls
satellite intensity

In presence of disorder, the intensity of the SP superlattice
reflections is reduced firstly by the existence of perturbed
regions where the amplitude of dimerisation vanishes (case
considered in Sect. A.2 of the Annexe) and even changes
of sign (case considered in Sect. A.3 of the Annexe and
shown Fig. 9), and secondly by the (possible) decrease of
the amplitude of dimerisation, u0(x), in the non-perturbed
regions. In this case, the relative decrease of the satellite
intensity, ISP , is given, as a function of the dopant con-
centration x, by the expressions (A.13) or (A.22):

ISP (x)/ISP (0) = [fP (x) u0(x)/u0(0)]2, (7)

where fP (x) = 〈gn〉 is the average amplitude of dimerisa-
tion normalized to the defect-free case (fP (0) = 1). The
relative variation of the amplitude of dimerisation can be
related to the relative variation of the SP energy gap [41]:

u0(x)/u0(0) = [∆(x)/∆(0)]3/2. (8)

If one uses, for the Zn-doped samples, the neutron scat-
tering data of reference [54], one gets:

– for the x = 0.91% sample: u0(x)/u0(0) ≈ 0.8 from
∆(x)/∆(0) = 0.85,

– for the x = 0.74% sample: [ISP (x)/ISP (0)]1/2 = 0.6.

This leads, for an average Zn concentration of 0.82%, to
fP (∼0.8%) = 0.75.

With a perturbation of the amplitude of dimerisation
described by the expressions (4) and (5), it is easy to show
that gn, averaged on the mean distance between two im-
purities c/x (assumed to be much larger than 2ξSP ) is
given by expression (A.26):

fP (x) = 〈gn〉 = 1 − 2xL0/c. (9a)

This leads, with c = 2.94Å, to L0 ∼ 45 Å.
If, within the framework of the calculation performed

in Section A.2 of the Annexe, the dimerisation vanishes in
the perturbed regions, one has instead of equation (9a):

fP (x) = 1 − xL0/c, (9b)

which leads to L0 ∼ 90 Å.
If one uses the neutron scattering data of the Si-doped

samples, one gets:

– for the x = 0.7% sample studied in reference [19]:
u0(x)/u0(0) ≈ 0.6 from ∆(x)/∆(0) = 0.71,

– for the x = 1% sample studied in reference [55],
which is more likely a 0.5% sample from its TSP value:
[ISP (x)/ISP (0)]1/2 = 0.3.

This leads, for an average Si concentration of 0.6%, to
fP (∼0.6%) = 0.50. It is interesting to remark that this fP

value nearly amounts at the fraction, 0.35±0.1, of Cu sites
lost by NQR measurements (probably because of the pres-
ence of impurity-induced moments on these Cu sites) in
the 0.6% Si sample recently investigated in reference [65]
(see in particular Fig. 2b in this reference).

By considering that the defect involves nb = 3 chains,
expression (9a) becomes:

fP (x) = 1 − 2xnbL0/c, (10a)

which gives L0 ∼ 40 Å, and expression (9b) becomes:

fP (x) = 1 − xnbL0/c, (10b)

which gives L0 ∼ 80 Å.
In the case where the dimerisation vanishes in the per-

turbed region, L0 values are twice larger than L0 obtained
for a perturbed region consisting of a phase shift of the
dimerisation by half a repeat period. The L0 values ob-
tained in the latter case agree quite well with those esti-
mated in Section 1. Thus, in the following, we shall con-
sider that the model of Section A.3 of the Annexe is the
best.

With an average value L0 = 42.5 Å one gets: L0∆Q ∼
1.5−1.9. From Figure 11, one obtains r ∼ 0.38−0.55. This
leads to ξSP ∼ 16−23 Å, a range of values which over-
laps ξSP determined in Section 1.

In expression (7) we have neglected a possible enhance-
ment with x of the Debye-Waller factor of the SP re-
flections due to disorder induced spatial variations of the
dimerisation amplitude. However, we do not believe that
this effect could change significantly the results because
u0 is very small and the superlattice intensity has been
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measured for SP reflections located at small Q reciprocal
positions where the corrections of the Debye Waller factor
are the smallest.

The 1D model developed in references [24–26] predicts,
with x, a drop of the SP satellite intensity much smaller
than the one experimentally observed. We think that the
reason of the discrepancy of the 1D model (where each
dopant induces only a soliton of size 2ξSP ) with the ex-
perimental results is that in the true (i.e. 3D) SP phase
each dopant induces a soliton-antisoliton pair, separated
by L0, where the amplitude of dimerisation is reduced or
even changes of sign.

4.2.3 L0 deduced from the drop of TSP

Several authors have already shown that the formation of
dopant-induced solitons is responsible for the drop of the
critical temperature, TSP , of the long range SP order [23].
Here we shall present a very simple calculation which ac-
counts quite well for the experimental rate of decrease
of TSP . It relies on the key role played by the interchain
coupling to achieve a 3D order, in a system dominated
by 1D fluctuations. The basic ingredient of the calcula-
tion is that if the interchain coupling between dimerised
regions (i.e. between first neighbouring sites along b) fixes
the TSP value, the presence of non-dimerised domains (or
dimerised domains with the wrong phasing) will diminish
the coupling energy, and thus TSP . If −2σ is the gain of
interchain coupling energy per dimerised site when each
site is surrounded by two dimerised chains (along b) with
a π phasing, the energy lost by a dimerised site which
has the wrong (i.e. zero) phasing with its neighbouring
dimers is +2σ. If a perturbed domain contains nb chains
with the wrong phasing, which each extends on L0/c sites,
the energy lost, with respect to the ground state energy
of −2σ per site, is: 2(nb + 1)σL0/c per site. If the relative
decrease of TSP is proportional to the average loss of in-
terchain coupling energy per site, one simply gets, for a
concentration 1/x of domain:

[TSP (0) − TSP (x)]/TSP (0) = x(nb + 1)L0/c, (11)

and thus:

d ln[TSP (x)]/dx = −(nb + 1)L0/c. (12)

In the case of the Zn-doped samples, with nb = 1, the
decrease rate:

dTSP (x)/dx ≈ −2.1 K/%,

obtained by the magnetic measurements of reference [22]
(see also Tab. 2), leads to L0 ≈ 22 Å.

In the case of the Si doped samples, with nb = 3, and
with the decrease rate:

dTSP (x)/dx ≈ −6.3 K/%,

obtained by the magnetic measurements in reference [20],
one gets L0 ≈ 32 Å.

In the case of the Al sample, with nb = 2, and with
the decrease rate:

dTSP (x)/dx ≈ −4.2 K/%,

determined Table 2, one obtains L0 ≈ 29 Å.
With an average value L0 = 28 Å, slightly smaller

than the L0 value determined in Sections 1 and 2, one
gets: L0∆Q ∼ 1−1.25. From Figure 11, one obtains r ∼
0.7−0.9. This leads to ξSP ∼ 20−25 Å, which is slightly
larger than the ξSP value determined in Section 1, but
which contains the ξSP values of Section 2.

4.2.4 Summary of the results

In summary, there is a general overall agreement between
the three independent determinations of ξSP and L0, as-
suming a model (shown Fig. 9) where, in the perturbed
regions, the dimerisation shifts by half a repeat period.
Reasonable values of ξSP are in the range 16–20 Å, and
those of L0 are in range 28–45 Å. With these values, one
roughly has: L0 ∼ 2ξSP . This corresponds to r ∼ 0.5, for
which expression (6) gives a profile close to a Gaussian
and which accounts quite well for the experimental profile
shown in Figure 4b for the 0.1% Si sample.

For r ∼ 0.5, the soliton and the antisoliton limiting the
perturbed domain begin to overlap. This situation corre-
sponds to that found in the numerical simulations of ref-
erence [28]. It shows that the interchain coupling is strong
enough to prevent the sizeable development of the dimeri-
sation with the wrong interchain phasing.

These determinations allow to estimate that the overall
size of the perturbated domain amounts at about:

L = L0 + 2ξSP ∼ 70 Å.

In the case where the soliton and the antisoliton, bearing
the AF correlations, begin to overlap it appears that L
is also comparable to the typical size of the magnetic do-
mains. Consistently, L amounts to the size (2ξAF ∼ 60 Å)
of the magnetic inhomogeneities determined by muon spin
relaxation in the AF phase of doped CuGeO3 [47].

With these data, one can also estimate the critical con-
centration, xc, above which the long range SP order is
destroyed. Basically, the long range SP order will disap-
pear: (i) transversally if, on adjacent chains, there is no
dimerised segments with the correct phasing which overlap
each other and (ii) longitudinally if, on a given chain, two
dimerised segments interrupted by a defect, do not overlap
with a dimerised segment having the correct phasing on a
neighbouring chain. Crudely, the long range SP order will
vanish if the average length of a non-perturbed domain be-
comes less than the size, L, of a perturbed domain. This
gives, for a substituent of the Cu site:

(c/x) − L < L, (13)

or:
x > xc ≈ c/2L. (14)
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With L ∼ 70 Å, one gets xc ∼ 2.1%. This critical con-
centration surprisingly corresponds to the critical value of
xc ∼ 2.1% determined by structural measurements in the
Mg-doped samples [34] and of xc ∼ 2.2% estimated from
magnetic measurements in the Zn-doped samples [22]. In
the case of a substituent of the Ge site, where the per-
turbed domain involves nb chains, one gets:

xc ≈ c/2nbL.

For the Si-doped samples, with nb = 3, one obtains
xc ∼ 0.7%. This critical concentration is very close to the
critical value xc ∼ 0.8% estimated from magnetic mea-
surements in the Si-doped samples [20].

For x larger than xc, the SP order will persist un-
der the form of a short range order. Indeed, diffraction
by the longitudinal short range SP order has been de-
tected for higher dopant concentration (1.5% and 5%) in
the Si-doped samples [56].

4.3 Comparison with the other disordered spin-Peierls
systems

The observation (for x < xc) of a long range SP order in
doped CuGeO3 is not surprising since it is established [57]
on theoretical grounds that the dimerized spin-1/2 chain
is stable against disorder. However, to our knowledge, this
is the first time that such a feature is really observed. The
long range order is rapidly destroyed by the defects in the
other SP systems (mostly the organic 2:1 cation or an-
ion radical organic charge transfer salts). We believe that
the reason is that the substitutional disorder in CuGeO3

preserves the long range array of localised charges (i.e.
the crystallographic structure of the Cu2+ lattice which
bears the spins 1/2), while in the 2 : 1 organic salts the
disorder limits primarily the correlation length, ξ4kF , of
the lattice of localised charges (i.e. of the 4kF charge den-
sity wave). Since in the soft 1D organic salts there is one
charge every two molecules, the 4kF lattice of localised
charges is accompanied by a dimerisation of the stack.
In presence of disorder there is a short-range dimerisa-
tion and, thus, short-range charge localization. In that
situation if, below the spin-charge decoupling temperature
(Tρ), SP correlations develop between the localized spins
1/2, its correlation length will be capped by ξ4kF . As gen-
erally in quasi-1D conductors, ξ4kF decreases rapidly with
the amount of disorder, the long range SP order (which
consists in a tetramerisation of the organic stack) will
be rapidly destroyed. This is what is observed in 2 : 1
TCNQ salts such as Qn(TCNQ)2 and the solid solution
NMPxPhen1−xTCNQ for x ∼ 0.5. In these salts, a quasi-
1D charge localization is observed on a ξ4kF of a few 10 Å
and, below Tρ, a quasi-1D SP local distortion takes place
on about the same correlation length [58,59]. At low tem-
perature, these 1D salts can be viewed as consisting of
AF chains interrupted by non-magnetic segments where
a local SP distortion takes place. Their spin susceptibil-
ity, which follows a low temperature T−α divergence, is
indicative of a quantum disordered phase (see for exam-
ple [60]).

A situation somewhat symmetric to that observed in
disordered CuGeO3, which basically exhibits 1D AF seg-
ments in a 3D SP phase, can be found in the organic
salt (TMDTDSF)2PF6 which presents 1D short range SP
order in a 3D AF phase [61]. This salt exhibits an orienta-
tional disorder of the non-centrosymmetrical TMDTDSF
molecule, which is an hybrid between the Se based
(TMTSF) and the S based (TMTTF) molecules [62]. At
the difference of the point disorder of CuGeO3, which ba-
sically perturbs locally the exchange path, the random
orientational disorder of (TMDTDSF)2PF6 induces a dis-
tribution of exchange integrals. In the presence of this kind
of disorder, the AF ground state is probably stabilized by
the interchain coupling as in disordered CuGeO3 [60]. The
1D SP segments observed in the (TMDTDSF)2PF6 hybrid
salt are the remaining trace of the SP order which devel-
ops in (TMTTF)2PF6 (the SP order is probably nucleated
in the parts of the TMDTDSF organic stacks where, be-
cause of the random orientational disorder, the S atoms
of the molecules face each other).

5 Conclusion

In this paper we have confirmed that the SP transition
of CuGeO3 is announced by a sizeable regime of 1D pre-
transitional fluctuations taking place along the chain di-
rection c. We have shown that the crossover temperature
to the regime of 2D fluctuations, in the bc plane, occurs
only 10 K above TSP . The transition to a 3D long range
SP order occurs at a TSP corresponding to 1/4 of the tem-
perature of preformation of singlet dimers (TMF ), that
we estimate at about 50 K. For a low amount of dopant,
the 3D SP order remains of long-range type, as previously
found, and the pretransitional fluctuations remain criti-
cal. The anisotropy and the thermal dependence of these
fluctuations are not significantly modified by the presence
of non-magnetic substituents of the Cu site or of the Ge
site. This is not the case for a magnetic substituent, such
as Ni, of the Cu site.

Our X-ray diffuse scattering investigation shows that
the SP ground state of doped samples contains quasi-1D
defects. We have modelized the disorder in doped CuGeO3

by the formation of soliton-antisoliton pairs, in the mag-
netic chain direction, which are pinned either to the sub-
stituent of the Cu site or to the deformation field induced
by the substituent of the Ge site. We have estimated the
impurity-induced soliton half width ξSP at about 16–20 Å,
a value which is two times smaller than ξSP of the mag-
netic field-induced soliton lattice of CuGeO3, and that the
separation between the soliton and the antisoliton, L0,
amounts at about 28–45 Å. With these numbers, we are
able to quantitatively account for the drop of TSP as a
function of the dopant concentration, and to estimate the
critical concentration xc above which the long range SP
order vanishes. The overall size of the perturbed domains,
L0 + 2ξSP ∼ 70 Å, thus obtained is comparable with the
size of the magnetic inhomogeneities determined by muon
spin spectroscopy in the AF phase of doped CuGeO3.
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Annexe

The purpose of this annexe is to calculate the X-ray scat-
tering from an inhomogeneous (i.e. doped) crystal which
has undergone a long range (SP) structural modulation
and which contains domains where the modulation is per-
turbed. In Section A.1, we shall recall some general diffrac-
tion expressions for a toy model of a crystal containing
atomic vacancies. We shall apply these expressions in Sec-
tion A.2 for a SP modulation with vacancies of dimerisa-
tion, and, in Section A.3, for a SP modulation containing
domains where the phase of the dimerisation jumps of π
because of the formation of soliton-antisoliton pairs.

A.1 Diffraction by a crystal with atomic vacancies

Let us consider a crystal of volume V with N sites of
coordinate rn. This crystal contains M < N atoms of
form factor f , and thus N − M atomic vacancies. The
amplitude diffracted by the crystal is simply:

A(q) =
∑

n

σnf exp(−iqrn), (A.1)

with σn = 1 if the site rn is occupied by an atom, σn = 0
otherwise. x = 〈σn〉 = M/N is the fraction of the sites
occupied. In this toy model the long-range order is due
to a periodic lattice of sites which is preserved even in
presence of atomic vacancies.

The X-ray intensity scattered by this crystal is
given by:

I(q) = |A(q)|2. (A.2)

I(q) is the sum of a Bragg reflection term and of a dif-
fuse scattering term (schematically shown Fig. 13b). The
intensity of the Bragg reflections is given by:

IB(q) = (xf)2
∑
h,k,l

δ(q − Qh,k,l), (A.3)

where Qh,k,l is a reciprocal wave vector of the lattice of
sites.

The diffuse scattering term is given by:

ID(q) = f2
∑
m

〈(σn − x)(σn+m − x)〉n exp(−iqrm)

= f2
∑
m

G(m) exp−(iqrm), (A.4)

where 〈....〉n means a spatial average, and G(m) is the
vacancy correlation function. If one introduces σk, the
Fourier transform of σn − x:

σn − x = (N)−1/2
∑

k

σk exp(−ik rn), (A.5)

Fig. 13. (a) Decomposition of the diffraction process in an in-
homogeneous long-range ordered periodic medium (containing
uncorrelated domains with atomic vacancies) into the sum of
the diffraction from a homogeneous long range ordered peri-
odic medium (with atoms of effective form factor xf) and of
the diffraction from a collection of independent diffracting do-
mains (with “anti-atoms” of form factor −f). (b) Schematical
representation of the diffraction pattern from such a medium
consisting of the sum of a Bragg reflection term, IB(q), and of
a diffuse scattering term ID(q).

expression (A.4) becomes:

ID(q = Qh,k,l + k) = f2|σk|2. (A.6)

If there is a random distribution of vacancies, one recovers
the (k independent) Laüe scattering term:

ID(q) = Nf2x(1 − x). (A.7)

If there are correlation between the vacancies, ID(q) gives
a k dependent diffuse scattering term centered on each
Bragg reflection and whose k dependence is given by
G(k) = |σk|2, which corresponds to the Fourier transform
of G(m).

As shown in Figure 13a, I(q) corresponds at the sum of
the scattering by an homogeneous periodic crystal, where
all the sites are occupied by an effective atom of form fac-
tor xf (entering in the expression (A.3)), and of the scat-
tering by “anti-atoms”, of form factor −f , located in do-
mains which Fourier transform of the form factor is given
by |σk|2.

It is interesting to calculate the integrated intensity of
these two different terms over a Brillouin zone (of volume
1/v = (2π)3N/V ):∫

BZ

IB(q)d3q = x2f2N/v (A.8)

∫

BZ

ID(q)d3q = x(1 − x)f2N/v. (A.9)

The integrated total intensity amounts to:∫

BZ

I(q)d3q = xf2N/v = Mf2/v. (A.10)
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As expected, only this last quantity is proportional to the
total number M = xN of atoms.

A.2 Spin-Peierls crystal with dimerisation vacancies

We generalize the expressions of Section A.1 by assum-
ing that the long-range SP phase (of amplitude of dimeri-
sation u, and of modulation wave vector qSP such that
exp iqSP rn = (−1)n) contains sites which do not undergo
the dimerisation. By defining the variable σn as in Sec-
tion A.1, the amplitude diffracted by the modulated crys-
tal is:

A(q) =
∑

n

f exp[−iq(rn + σn(−1)nu)]. (A.11)

If qu � 1, expression (A.11) becomes:

A(q) =
∑

n

f exp(−iqrn)[1 + σn(−1)nqu)]. (A.12)

In addition to the main Bragg reflections, the dimerisation
now induces superlattice reflections located in Qh,k,l+qSP

and of intensity:

ISP (q) = (xfqu)2
∑
h,k,l

δ(q − Qh,k,l − qSP ). (A.13)

This generalizes the expression (A.3), with x = 〈σn〉 being
the fraction of non modulated sites.

The diffuse scattering term given by expression (A.4)
is generalized by:

ID(q) = (fqu)2
∑
m

(−1)mG(m) exp(−iqrm), (A.14)

with G(m) = 〈(σn − x)(σn+m − x)〉n. Expression (B.4)
becomes:

ID(q = Qh,k,l + qSP + k) = |fqu|2|σk|2. (A.15)

The integrated intensities follow the same relationships as
those given by expressions (A.8–A.10), with f → fqu.

In CuGeO3 ID(q) has the anisotropy of a diffuse sheet.
This corresponds to the Fourier transform of a 1D corre-
lation function G(m) in direct space.

If the domains of vacancies have all the same size L0,
one has [63]:

G0(m) = 1 − |m|c/L0 for |m|c < L0,

G0(m) = 0 for |m|c > L0. (A.16)

From which one gets:

G0(k, L0) = [sin(kL0/2)/(kc/2)]2. (A.17)

If now there is a narrow distribution of domain sizes,
around the mean value L0(	σ), described by the gaus-
sian probability:

Pσ(L − L0) =
(√

2πσ
)−1

exp[−(L − L0)2/2σ2],

one gets:

Gσ(k, L0) = G0(k, L) ∗ Pσ(L − L0)

= G0(k, L0) exp(−k2σ2/2) + o(k2σ4/c2),
(A.18)

whose k dependence is close to a Gaussian.
If there is a random distribution of domain sizes [64],

and if µ is the linear probability to cross, per unit length,
a domain wall which limits the vacancy region, one has:

Gµ(m + dm) = Gµ(m)[1 − µcdm]. (A.19)

The solution of this differential equation is:

Gµ(m) = exp(−µcm) (A.20)

whose 1D Fourier transform is a Lorentzian:

Gµ(k) ∝ 1/c2[µ2 + k2]. (A.21)

A.3 Spin-Peierls crystal with domains
where the amplitude of dimerisation varies

In that case one can write the amplitude of dimerisation
in these domains under the form gnu. gn plays the same
role as σn in Section A.2. Expression (A.13) becomes:

ISP (q) = (fqu〈gn〉)2
∑
h,k,l

δ(q − Qh,k,l − qSP ), (A.22)

and expression (A.15) becomes:

ID(q = Qh,k,l + qSP + k) = |fqu|2|gk|2, (A.23)

with:

gk = (N)−1/2
∑

k

(gn − 〈gn〉) exp(ik rn). (A.24)

If one takes the expressions (4) and (5) to describe the
perturbation of modulation shown Figure 9, one has:

gn = [1 − f(nc) + f(nc − L0)], (A.25)

with:
f(nc) = th(nc/ξSP ).

It is easy to show that gn averaged on the distance,
c/x, between two substituents (assumed to be larger than
2ξSP ) is:

〈gn〉 ≈ 1 − 2xL0/c. (A.26)

If L0 � c/x one has:

gn − 〈gn〉 ≈ f(nc − L0) − f(nc), (A.27)

whose Fourier transform is:

gk = (πξSP /c)[sin(kL0/2)/sh(πkξSP /2)]. (A.28)
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The limit k = 0 is such that:

gk=0 = L0/c

gives the number of sites limited by a soliton-antisoliton
pair.

From (A.28), one gets:

G(k) = |gk|2 = (πξSP /c)2[sin(kL0/2)/sh(πkξSP /2)]2,
(A.29)

whose k dependence is governed by the ratio r = ξSP /L0.
Typical profiles are shown Figure 11.

For r = 0, the profile has a:

G(k) = [sin(kL0/2)/(kc/2)]2 (A.30)

dependence (also given by (A.17)). One has L0 =
0.888πξP

c , and where ξP
c is the inverse of the HWHM of

the diffuse scattering, ∆Qc. G(k) given by (A.30) van-
ishes for k = 2πp/L0, and exhibits secondary maxima for
k = 2π(p + 3/2)/L0, where p is an integer. The intensity
of these maxima decreases when p increases. The inten-
sity of the first one (p = 1) is only 4.5% of G(k = 0). The
secondary maxima vanish exponentially when r increases.

When r increases, the k dependence of G(k) also
evolves towards that of a Gaussian. Figure 11 shows
that G(k) is very close to a Gaussian for r ∼ 0.5.

Expression (A.29) becomes, for q small:

G(k) ≈ (L0/c)2 exp−(kξG)2, (A.31)

with:

ξ2
G =

(
L2

0 + π2ξ2
SP

)
/12 ≈ ln 2(ξP

c )2. (A.32)

When r increases further, the k dependence of G(k)
evolves towards that of a Lorentzian square. The
Lorentzian square profile is only reached in the limit
r 	 1. In that case G(k) becomes:

G(k) = (L0/c)2/
[
1 + (kξL)2

]2
, (A.33)

with ξL = πξSP /2
√

6, or ξSP ≈ ξP
c .
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